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From Dirac’s de Sitter Equation to a Generalization
of Gravitational Theory
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Dirac’s de Sitter covariant spinor wave equation, expressed on the group manifold
of G 5 SO(3, 2) in terms of invariant vectors, gives rise to a modified
Kaluza–Klein (KK) formalism with the Lorentz subgroup H 5 SO(3, 1) as typical
fiber and the anti-de Sitter (AdS) space as base of the principal fiber bundle on
G. The resulting gauge theory of gravitation gives an incomplete description of
spinning particles because spin, considered as a generalized charge, has space-
time properties. It is shown how the geometrical structure has to be altered to
further modify the gauge formalism to a consistent theory of spin and gravitation.
The resulting gravitational field equations on the bundle include torsion, and
their projection on space-time is of higher nonlinearity in the curvature.

Ihr naht euch wieder schwankende Gestalten die früh sich einst dem trüben Blick
gezeigt. Versuchich wohl euch diesmal fest zu halten? Fühlich mein Herz noch
jenem Wahn geneigt?

—Goethe

An early study of Sommerfeld’s superb presentation of Dirac’s spinor
equation, expressed solely in terms of Clifford algebras without matrices,
convinced the author that the Clifford algebra over complex numbers is a
generalization of complex phases in wave equations (Sommerfeld, 1944). An
article of Schrödinger on the Dirac equation in a gravitational field led then
to the conviction that such a phase might lead to a starting phase for a gauge
theory of gravitation (Schrödinger, 1932). Klein had recognized earlier that
the theory of gravitation may be derived from the invariance properties of
the Dirac equations. Schrödinger also directed my attention to an article of
Einstein and Mayer in which quaternions over the field of complex numbers
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replace the complex Clifford numbers (Hestenes and Sobczyk, 1986). A
breakthrough occurred when I became acquainted with Dirac’s work on the
electron wave equation in de Sitter space (Dirac, 1935). Dirac constructed a
modified version of his equation with a wave operator expressed only in
terms of representations of the 10 generators of the de Sitter groups. The
wave operator thus becomes

a, b 5 1 . . . 5, gagbMab (1)

with g1 . . . g4 the generators of the Clifford algebra g5 5 g1g2g3g4 and
gab 5 gagb,

Mab 5 xa
­

­xb 2 xb
­

­xa (2)

The de Sitter and anti-de Sitter spaces of constant curvature are imbedded
as four-dimensional spheres into five-dimensional pseudo-Euclidean space
with the metrics

haa [ (1, 1, 1, 61, 21), hab [ 0 (a Þ b), habxaxb 5 6r 2 (3)

Dirac showed that the operators MabMab and gabMab in neighborhoods
of the point x5 ' r, xk small (k 5 1 . . . 4), are approximations of the
Klein–Gordon and Dirac wave operators (apart from factors r 2 and rg5),

i, k 5 1 . . . 4, 2r 2hik ­

­xi

­

­xk and 2rg5gk ­

­xk (4)

Dirac then constructed the analogue of the conventional expressions in the
modified theory.

I took up the subject in the 1970s, presenting results occasionally at
meetings in honor of Dirac (Halpern, 1975, 1982, 1984, 1994, 1996, 1998).
The theory was soon formulated on the manifold of the simple anti-de Sitter
group G 5 SO(3, 2) or its universal covering group. Such formulations had
become a prevailing trend, mainly for the Poincaré group (Bopp and Haag,
1950; Neeman and Regge, 1978; Gusiew and Keller, 1997). The Poincaré
group offers the reassuring property of making particle rest masses Casimir
invariants. This is not true for our simple group G. The volume of phase
space of zero-rest-mass radiation exceeds by far the corresponding volume
available to massive matter, so that transitions from the latter to the former
without protective conservation laws for rest masses pose a threat. Transitions
of this kind may occur, however, only within cosmological time spans.
Approximate conservation laws have proven after all most beneficial to the
development of science.

The anti-de Sitter space is obtained as a factor space G/H with G 5
SO(3, 2) and H 5 SO(3, 1) the Lorentz subgroup. Simple groups have no



Generalization of Gravitational Theory 245

invariant subgroups, so that the left and right cosets do not coincide. We
choose the space of the left cosets.

A principal fiber bundle P(G, H, p, G/H ) with typical fiber H, natural
projection p: G → G/H 5 B, is formed (Nomizu, 1956). Because it is trivial,
one can introduce noncanonical coordinates on G: xr, r 5 1 . . . 10, for which
the coordinates xh (h 5 1 . . . 4) serve not only to label points of G, but also
their projection points on B. The remaining 6 coordinates xm, m 5 5 . . . 10,
label the points of the fiber over each point of B.

We can construct left-invariant vector fields AR , R 5 1 . . . 10, such
that the last 6, AM (M 5 5 . . . 10), lie on the fibers,

R, S, T 5 1 . . . 10, [AR , AS] 5 cRS
TAT (5)

The remaining 4 vector fields AK (K 5 1 . . . 4) can be chosen perpendicular
to the fibers, and all 10 perpendicular to each other w.r.t. the Cartan–Killing
metric g,

gRS 5 Tr(!d(AR), !d(AS)) 5 cRU
VcSV

U (6)

Expressed in terms of the double-index notation used by Dirac, the
structure constants have the value

c[a,b][c,d]
[e, f ] 5 hacde

bd f
d (7)

with the necessary changes of sign with permutation of indices within a
bracket. The simple group also implies antisymmetry to exchange of any
pair of double indices: cRS

T 5 2cRT
S, etc.

A connection is defined by the metric g with horizontal vectors perpen-
dicular to the fiber. Horizontal vectors are henceforth denoted by indices
A . . . K running from 1 to 4, and vertical vectors by indices L . . . Q that run
from 5 to 10. Letters R . . . Z denote any indices 1 . . . 10. The corresponding
summation convention is applied without further warning. Thus B

B stands for
(4

B51, M
M 5 (10

M55, S
S 5 (10

S51, these rules applying also to coordinate indices
(lowercase letters). The forms dual to the left-invariant vectors are denoted
by AR. Right-invariant vectors and forms are denoted by a bar: AR , AS,

[AR , AS] 5 2cRS
TAT , [AR , AS] 5 0 (8)

The natural projection p defines the projection of the horizontal part of a
vector on the bundle

p8AE(xr) 5 a(xe); p8AM 5 0 (9)

The commutation relations (5) imply that p8AE depends on the point of the
fiber at which AE is chosen, whereas p8AE according to the second equation
of (8) does not depend on it. The bundle of orthonormal frames is equivalent



246 Halpern

to the projections p8AE for a left-invariant vector field from any point of the
fiber for every point of B. It is isomorphic to P. The metric g on G determines
thus a metric p8g 5 g on B.

Physicists would tend to call the vectors AM in the present case “internal”
rather than vertical. They are obviously acting on the internal degrees of
freedom of spin. The right-invariant AM act on space-time as well. The
horizontal AE act on space-time and have mainly coordinate components
Ae

E. Their dual forms have exclusively components AE
k (AE

m 5 0). Coordinate
components Am

E and AN
k Þ 0 are a result of space-time curvature. Always

Ak
M, AE

n are zero.
The composition of AR of horizontal and vertical vectors depends on

the arbitrary choice of the origin on G,

AR(x) 5 Ada(x)(AR(x)) (10)

with a(x) the group element on the point of G with coordinates x. Vertical
components of AE thus vanish at the origin of G and increase with horizontal
distance from it.

The wave operator equation (1) that Dirac formed may be interpreted
as a representation of the Casimir operator gRSARAS of G.

I was intrigued by the distinction of horizontal and vertical in the present
formulation. It appears like a model of orbital and inner angular momentum.
We observe that Dirac’s wave operator uses generators of G of which one
kind acts only on spin variables and the other kind only on space-time. The
latter operators on the group manifold G must be the space-time component
of a right-invariant generator, whereas the other kind corresponds to a left-
invariant generator. The present formulation allows one to construct a corres-
ponding master equation for any spin,

D(x) 5 gRS Ver(AR)Hor(AS)

5 gRSAu
RAM

u Am
M Av

S AE
v At

B
­

­xm

­

­xt (11)

An operator D acts on the wave function c(xr), which is a functional realization
equivalent to a linear representation (Bopp and Haag, 1950). In case of
vanishing rest mass, Dc(x) 5 0. The only Clifford algebra which occurs here
explicitly is that of the complex numbers in the wave function. The burden
rests on the functional structure of the wave function to provide the required
functional realizations.

Dirac’s wave operator is too special to be generalizable uniquely to a
Casimir operator. I just mention a different generalization which becomes
the sum of the different adjoint transformations of the 10 degrees of freedom
of G. A particle of vanishing rest mass has to fulfill, accordingly,
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o
10

u51
!dAUc 5 0 (12)

Here !dAU 5 (R8AU)21L8AU with R and L right and left group transformations.
c must then be the functional realization of an element of the Lie algebra,
so that simply,

o
10

U51
cUS

TcT 5 0

In suitable domains, this may agree with Dirac’s wave operator, although the
operator of Eq. (12) contains no projection operators like that of Eq. (11)
and thus always contains a Klein–Gordon operator bilinear in the derivatives
which vanishes for zero rest mass. We shall not deal further with this odd
interpretation.

The Cartan–Killing metric of a simple group fulfills the relation with
Ruv the Riccı́ tensor on G (Eisenhart, 1933),

Ruv 5 1–4 guv

The author interpreted this early as equivalent to g fulfilling the Einstein
vacuum equation with a cosmological term of unity,

Ruv 2 1–2 guvR 1 guv 5 0 (13)

AR and AR are each Killing vector fields on G and their orbits are geodesics.
The projection by p8 of Eq. (13) onto B results in Einstein’s equations

on B with a cosmological term corresponding to the “radius” of the universe
of the anti-de Sitter group. A unit of length is thereby established on B.

The projection of orbits of the group generated by a horizontal AE results
in geodesics of the metric g on B. Projection of orbits of vectors with
horizontal as well as suitable vertical components onto B results in lines
which correspond to the motion of spinning test particles. Tangent vectors
of particle motion expressed in terms of AR must have a timelike component
of AE and the horizontal and vertical parts must commute.

The geometrical relations of the group manifold exposed are the ingredi-
ents for the construction of a non-Abelian Kałuża–Klein-type gauge theory
(KK theory).

I developed doubts about the unlimited validity of the Einstein–Hilbert
equations of general relativity because they imply inevitably the collapse of
matter to a point and cannot account for Schrödinger’s discovery of pair
formation in gravitational fields.

I saw at least one of these shortcomings in the limitations to which a
mathematical structure based on the idealization of axioms necessarily is
subject to in describing objects in nature.
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Galileo’s principle of inertia makes use of such abstractions as straight
lines in Euclidean space. This principle is at the foundation of all physical
theory, but we know that in the large, space is not flat and in the small,
particles have spin.

A modernized, relativistic version of the principle could be: A particle
(spinning or structureless) moves along an orbit of the anti-de Sitter group
in the anti-de Sitter universe unless . . . . A corresponding version of the
principle of equivalence, locally adapted to anti-de Sitter space, is easily
constructed (Halpern, 1982, 1984). The present Kałuża–Klein formalism
suggests one generalize the Cartan–Killing metric to more general metrics
g which are solutions of the Einstein equations (13) and have the same metric
on the fibers as before. Also, six Killing vector fields AM should remain
intact. The new metric g determines, however, four different horizontal vector
fields AE. They are perpendicular to the AM with the new metric g. There
are in general no right-invariant vectors. The commutation relations of the
AM with the AE and with each other should remain unaltered as in Eq. (5).
Only we have now

[AE , AF] 5 #EF
RAR (14)

where the # are functions of the points on G. In particular, #EF
M are the

components of the Lie algebra-valued curvature two-form and #EF
H the

torsion two-form, which vanishes for the Cartan–Killing metric and for many
other solutions g of Eq. (13). The Jacobi relations must be fulfilled at every
point also with the #EF(x)R replacing cEF

R; this guarantees the correct symme-
try properties of the related tensorial expressions on the base B. The new
solutions retain the topology of G.

The field equations are Einstein’s equations in 10 dimensions with
cosmological member. Solutions must respect the six Killing vector fields
AM and the topology of G.

Expressing the Christoffel connection in an orthonormal frame and con-
sidering the physical interpretation of Eq. (14) as curvature and torsion two-
forms, we easily project the equations onto the base and express them there
in curvature and contortion tensors. The most general admissible connections
resulting on the base are those of the Riemann–Cartan geometry of the form,

Gi
jk 5 {j

i
k} 2 Kjk

i

Kjk
i 5 2Kj

i
k 5 Tkj

i 1 Tk
i
j 1 Tj

i
k (15)

Tjk
i 5 1–2 (Gi

jk 2 Gi
kj)

The geometry on the base is a metric one (vanishing covariant deriva-
tives) of metric tensors. For an introduction to this geometry in a quite
different context see Hehl et al. (1976). The field equations on the base are
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Bik 2 1–2 gik(B 1 1) 5 3–2 k[HijhlHk
jhl 2 1–4 gikHabcdHabcd] 5 0

Hk
jhl;k 5 0 (16)

Bik and B are the Ricci tensor and invariant on the base and H is the curvature
tensor, which, different from B, may include contortion (B is not to be
confounded with the symbol for the base manifold). The constant k should
be 1 in our notation. We insert it as a generalization which can even depend
on space-time similar as Einstein did in his work on Kaluza–Klein theory.
The equations can have solutions which violate the principle of equivalence
and prevent collapse to a point (Halpern, 1994, 1996). The solutions for
vanishing contortion include all solutions of Einstein’s equations with cosmo-
logical term.

Although we have constructed a theory of the Kaluza–Klein type, it
becomes clear that it can be at best an approximation. The motion of a
spinning particle shows the correct interaction of spin and curvature, but not
the spin precession. The formalism has to be generalized to the case of a
charge with space-time components like spin. This can be achieved without
altering the metric properties and commutation relations by extending the
action of the Lie algebra of the connection one-form also to the fibers.
Formally, the introduction of a contortion term for the components of the
linear connection on G on the fibers, which is equivalent to mixed vertical–
horizontal components, acting on horizontal vectors, achieves the goal (Halp-
ern, 1998). Notice that this is contortion on G, to be distinguished from that
on B mentioned previously. Seen from the point of view of Kaluza–Klein
theories, the Einstein equations (13) in 10 dimensions have to be generalized
to include these terms with the contortion tensor. Projected on the base, this
results there in scalar fields depending on the curvature on B. The nonlinearity
of these complete equations in the curvature is of course greater than that of
Eqs. (13) and (16). This completes the theory doing justice to a generalization
of the principle of inertia. The generalization required to include spin preces-
sion was rather obvious, but the modification of the geometry to generalize
this formalism without disturbing it was not readily found.

The term to include spin precession could easily be inferred from the
general relativistic version of the Dirac equation where the spin connection
acts on the spin of the wave function. The incorporation of this effect into
the geometry to generalize the Kaluza–Klein formalism posed, however,
considerable problems. The Kaluza–Klein formalism is introduced on the
anti-de Sitter manifold; the gauge group is H 5 SO(3, 1). The second set
of the coupled equations (16) were already suggested independently by C.
Kilmister and by C. N. Yang. The equations’ nonlinearity in the curvature
is increased by the contortion on the group manifold.
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